Dewey Edition21
ReviewsI can warmly recommend this book to anyone considering giving a course on magnetism and for those students of condensed matter physics, who have no access to such a course ... it is also very useful and enjoyable reading for those who have been working in magnetism for some time and have felt the lack of a systematic review of the subject., "Written for undergraduates who have knowledge of basic quantum mechanics, electromagnetism, and some atomic physics, this clearly organized text introduces magnetism in condensed matter systems. The chapters are laid out with tables, annotation, and some of the figures incorporated into the wide outside margins. Lists of reading and exercises conclude each chapter but the last, which is devoted to new topics and unanswered problems in the field."--SciTech Book News, ... the reader or student obtains a very thorough and systematic background in which to place the large variety of subject matter.
Table Of Content1. Introduction2. Isolated magnetic moments3. Environments4. Interactions5. Order and magnetic structures6. Order and broken symmetry7. Magnetism in metals8. Competing interactions and low dimensionalityAppendix A: Units in electromagnetismAppendix B: ElectromagnetismAppendix C: Quantum and atomic physicsAppendix D: Energy in magnetism and demagnetismAppendix E: Statistical mechanicsAppendix F: List of symbolsIndex
SynopsisAn understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality.This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theorectical principles are applied to real systems. There is substantial discussion of experimental techniques and current reserach topics. The book is copiously illustrated and contains detailed appendices which cover the fundamental principles., The superb book describes the modern theory of the magnetic properties of solids. Starting from the fundamental principles, this copiously illustrated volume outlines the theory of magnetic behaviour, describes, experimental techniques, and discusses current research topics. The book is intended for final year undergraduate students and graduate students in the physical sciences., The superb book describes the modern theory of the magnetic properties of solids. Starting from fundamental principles, this copiously illustrated volume outlines the theory of magnetic behaviour, describes experimental techniques, and discusses current research topics. The book is intended for final year undergraduate students and graduate students in the physical sciences. To request a copy of the Solutions Manual, visit: http: //global.oup.com/uk/academic/physics/admin/solutions, An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theorectical principles are applied to real systems. There is substantial discussion of experimental techniques and current reserach topics. The book is copiously illustrated and contains detailed appendices which cover the fundamental principles.